\qquad

TRIANGLE TOOLKIT

	Tool Name: Inverse Trig Example (must show all steps):
FIND THE ANGLE	When can we use this? Right Δ only! $\frac{\tan (<)}{1}=\frac{O p p}{A d j} \quad \frac{\sin (<)}{1}=\frac{O p p}{H y p}$ $\frac{\cos (<)}{1}=\frac{A d j}{H y p}$ $\frac{\sin (x)}{1}=\frac{24}{60}$ Involves: Must have: $\mathbf{2}$ side lengths Trying to find: one acute angle $x=\sin ^{-1}\left(\frac{24}{60}\right)$ Can be: $\boldsymbol{\operatorname { t a n }}^{-1}$ or $\boldsymbol{\operatorname { s i n }}^{-1}$ or $\boldsymbol{\operatorname { c o s }}^{-1}$
30-60	Tool Name: $\underline{30-60-90 \Delta}$ When can we use this? 30-60-90 Δ only! Must have: a 30-60-90 Δ Can't assume: Angle measures In the generic $\Delta, \sqrt{3}$ is ALWAYS across from the 60° angle! **Just multiply the sides of the GENERIC by the zoom factor** $z f=\frac{12 \cdot \sqrt{3}}{\sqrt{3} \cdot \sqrt{3}}=\frac{12 \sqrt{3}}{\sqrt{9}}=\frac{12 \sqrt{3}}{3}=4 \sqrt{3}$, so $x=4 \sqrt{3} \cdot 1=4 \sqrt{3}$, and $y=4 \sqrt{3} \cdot 2=8 \sqrt{3}$ $z f=\frac{18}{2}=9, \text { so } y=9 \cdot 1=9,$ and $x=9 \cdot \sqrt{3}=9 \sqrt{3}$
45-45	
NON RIGHT $\Delta^{\prime} s$!	Tool Name: Law of Sines Can be used on a non-right $\Delta!$ Example (must show all steps): When can we use this? Must have: $\underline{\mathbf{2}}$ angles and one opposite side Trying to find: other opposite side $\begin{gathered} \frac{\sin (24)}{17}=\frac{\sin (93)}{x} \\ x \cdot \sin (24)=17 \cdot \sin (93) \end{gathered}$ OR 路 Must have: $\underline{\mathbf{2} \text { sides and one opposite angle }}$ $x=\frac{17 \cdot \sin (93)}{\sin (24)}$ \qquad Trying to find: other opposite angle $x \approx 41.74$ $y=93(\Delta$ sum $)$
NON RIGHT $\Delta^{\prime} s!$	Tool Name: Law of Cosines \square Can be used on a non-right Δ ! Example (must show all steps): When can we use this? Must have: SAS (side-angle-side) Trying to find: $\underline{3}^{\text {rd }}$ side $x^{2}=15^{2}+12^{2}-2 \cdot 15 \cdot 12 \cdot \cos (110)$ $x^{2}=369-360 \cdot \cos (110)$
LOOK FOR SAS !	OR Must have: $\mathbf{3 \text { sides }}$ $x=\sqrt{369-360 \cdot \cos (110)}$ Trying to find: one angle $x \approx 22.18$

