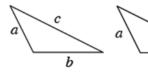

TRIANGLE CONGRUENCE TOOLKIT

SAS≅



(2 sides and the angle between them)

Why does this work?

- * Δ 's are ~ by SAS~
- * zf = 1 (tick marks tell us that the sides are \cong , making the zf = 1)

SSS≅

(3 sides)

Why does this work?

- * Δ 's are \sim by SSS \sim
- * zf = 1 (a = a, b = b, c = cso $\frac{a}{a} = 1, \frac{b}{b} = 1, \text{ and } \frac{c}{c} = 1$)

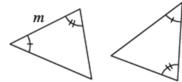
HL≅

(hypotenuse-leg; ONLY for right Δ 's)

Why does this work?

- * Pythagorean Theorem gives us the 3rd sides, <u>THEN</u>...
- * Δ 's are ~ by SSS~ or SAS~
- * zf = 1 (because $\frac{H}{H} = 1$ and $\frac{L}{L} = 1$)

AAS≅

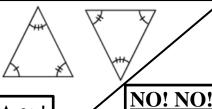


(2 angles and the <u>corresponding</u> side that is <u>not between</u> the angles)

Why does this work?

- * Δ 's are ~ by AA~
- * zf = 1 (tick marks tell us this...)

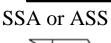
ASA≅



(2 angles and the side between them) Why does this work?

- * Δ 's are ~ by AA~
- * zf = 1 (because $\frac{m}{m} = 1$)

AA or AAA



NOT FOR $\Delta \cong !$

 Δ 's <u>are</u> ~ by AA~

(sides?)

But, no zf...

NOT FOR $\Delta \sim OR \Delta \cong !$

Can't even prove the Δ 's are \sim