PRACTICE - CONDITIONAL PROBABILITY

Name _____

Show all work neatly.

	Speaks a 2 nd language		
Male	20	40	
Female	30	10	

What do these symbols mean?

| means _____

U means _____

∩ means _____

Find the following probabilities.

P(Male) = _____

P(Female) = _____

P(2nd Language) = _____

P(No 2nd Language) =

P(Male|2nd Language) = _____

P(Female | 2nd Language) =

P(2nd Language | Male) =

P(2nd Language|Female) = _____

P(Male ∪ 2nd Language) = _____

P(Female ∪ 2nd Language) = _____

P(Male ∩ 2nd Language) = _____

P(Female ∩ 2nd Language) = _____

P(Male) · P(2nd Language) = _____

P(Female) · P(2nd Language) = _____

Independent? Why or why not?

· means _____

Cat? Yes.

Cat? No.

Find the following probabilities.

Dog? Yes.

Dog? No.

9	24	
3	8	

P(Cat) = _____

Independent? Why or why not?

Mutually exclusive? Why or why not?

$$P(Cat) \cdot P(Dog) =$$

Now, analyze the results from above to answer the following question.

Francisco asks the students in his school what pets they have. He studies the events shown.

- Event S: The student has a cat.
- Event T: The student has a dog.

Francisco finds that the two events are independent.

Select all the equations that must be true for events S and T.

$$P(S|T) = P(S)$$

$$P(S|T) = P(T)$$

$$P(T|S) = P(S)$$

$$P(T|S) = P(T)$$

$$P(S \cup T) = P(S) \bullet P(T)$$

$$P(S \cap T) = P(S) \bullet P(T)$$

A total of 200 people attend a party, as shown in the table.

A person is selected at random to win a prize. The probability of selecting a female is 0.6. The probability of selecting a child, given that the person is female, is 0.25. The probability of selecting a male, given that the person is a child, is 0.4.

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

	Adults	Children	Total
Male			80
Female			120
Total	150	50	200