\qquad
Show all work neatly.

Speaks a $2^{\text {nd }}$
language

What do these symbols mean?
| means \qquad

U means \qquad
\cap means \qquad
Speaks only one language

Male	20
	40
	30

Cat? Yes. Cat? No. Find the following probabilities.

Dog? Yes.	8

$$
\begin{aligned}
& P(\text { Cat })= \\
& P(\text { Dog })= \\
& P(\text { Cat } \mid \text { Dog })= \\
& P(\text { Dog } \mid \text { Cat })=
\end{aligned}
$$

Independent? Why or why not?
$P($ Cat \cup Dog $)=$ \qquad
$P($ Cat $\cap \operatorname{Dog})=$ \qquad

Mutually exclusive? Why or why not?
$P($ Cat $) \cdot P($ Dog $)=$ \qquad

Now, analyze the results from above to answer the following question.
Francisco asks the students in his school what pets they have. He studies the events shown.

- Event S : The student has a cat.
- Event T : The student has a dog.

Francisco finds that the two events are independent.
Select all the equations that must be true for events S and T.$P(S \mid T)=P(S)$

$$
P(S \mid T)=P(T)
$$$P(T \mid S)=P(S)$$P(T \mid S)=P(T)$$P(S \cup T)=P(S) \bullet P(T)$$P(S \cap T)=P(S) \bullet P(T)$

A total of 200 people attend a party, as shown in the table.

A person is selected at random to win a prize. The probability of selecting a female is 0.6 . The probability of selecting a child, given that the person is female, is 0.25 . The probability of selecting a male, given that the person is a child, is 0.4 .

	Adults	Children	Total
Male			80
Female			
Total	150	50	200

Complete the two-way table to show the number of adults, children, males, and females who attended the party.

